Predictive Adaptation of Hybrid Monte Carlo with Bayesian Parametric Bandits
نویسنده
چکیده
This paper introduces a novel way of adapting the Hybrid Monte Carlo (HMC) algorithm using parametric bandits with nonlinear features. HMC is a powerful Markov chain Monte Carlo (MCMC) method, but it requires careful tuning of its hyper-parameters. We propose a Bayesian parametric bandit approach to carry out the adaptation of the hyper-parameters while the Markov chain progresses. We also introduce the use of cross-validation error measures for adaptation, which we believe are more pragmatic than many existing adaptation objectives. The new measures take the intended statistical use of the model, whose parameters are estimated by HMC, into consideration. We apply these two innovations to the adaptation of HMC for prediction and feature selection with multi-layer feedforward neural networks. The experiments with synthetic and real data show that the proposed adaptive scheme is not only automatic, but also does better tuning than human experts.
منابع مشابه
Sequential Monte Carlo Bandits
In this paper we propose a flexible and efficient framework for handling multi-armed bandits, combining sequential Monte Carlo algorithms with hierarchical Bayesian modeling techniques. The framework naturally encompasses restless bandits, contextual bandits, and other bandit variants under a single inferential model. Despite the model’s generality, we propose efficient Monte Carlo algorithms t...
متن کاملSpatial count models on the number of unhealthy days in Tehran
Spatial count data is usually found in most sciences such as environmental science, meteorology, geology and medicine. Spatial generalized linear models based on poisson (poisson-lognormal spatial model) and binomial (binomial-logitnormal spatial model) distributions are often used to analyze discrete count data in which spatial correlation is observed. The likelihood function of these models i...
متن کاملNon-parametric Bayesian modeling of complex networks
Modeling structure in complex networks using Bayesian non-parametrics makes it possible to specify flexible model structures and infer the adequate model complexity from the observed data. This paper provides a gentle introduction to non-parametric Bayesian modeling of complex networks: Using an infinite mixture model as running example we go through the steps of deriving the model as an infini...
متن کاملBayesian Optimization with Robust Bayesian Neural Networks
Bayesian optimization is a prominent method for optimizing expensive-to-evaluate black-box functions that is widely applied to tuning the hyperparameters of machine learning algorithms. Despite its successes, the prototypical Bayesian optimization approach – using Gaussian process models – does not scale well to either many hyperparameters or many function evaluations. Attacking this lack of sc...
متن کاملBayesian dark knowledge
We consider the problem of Bayesian parameter estimation for deep neural networks, which is important in problem settings where we may have little data, and/ or where we need accurate posterior predictive densities p(y|x,D), e.g., for applications involving bandits or active learning. One simple approach to this is to use online Monte Carlo methods, such as SGLD (stochastic gradient Langevin dy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011